Inactivation of Metabolic Genes Causes Short- and Long-Range dys-Regulation in Escherichia coli Metabolic Network

نویسندگان

  • Dinesh Kumar Barupal
  • Sang Jun Lee
  • Edward D. Karoly
  • Sankar Adhya
چکیده

The metabolic network in E. coli can be severely affected by the inactivation of metabolic genes that are required to catabolize a nutrient (D-galactose). We hypothesized that the resulting accumulation of small molecules can yield local as well as systemic effects on the metabolic network. Analysis of metabolomics data in wild-type and D-galactose non-utilizing mutants, galT, galU and galE, reveal the large metabolic differences between the wild-type and the mutants when the strains were grown in D-galactose. Network mapping suggested that the enzymatic defects affected the metabolic modules located both at short- and long-ranges from the D-galactose metabolic module. These modules suggested alterations in glutathione, energy, nucleotide and lipid metabolism and disturbed carbon to nitrogen ratio in mutant strains. The altered modules are required for normal cell growth for the wild-type strain, explaining why the cell growth is inhibited in the mutants in the presence of D-galactose. Identification of these distance-based dys-regulations would enhance the systems level understanding of metabolic networks of microorganisms having importance in biomedical and biotechnological research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of ackA, pta and poxB inhibition by antisense RNA on acetate excretion and recombinant beta interferon expression in Escherichia coli

Introduction: Escherichia coli (E.coli) is one of the most widely used hosts for the production of recombinant proteins. The main problem in getting high product yields and productivity is the accumulation of acetic acid (acetate) as an unwanted metabolic by-product. In this study, an antisense-based strategy as a metabolic engineering approach was employed to hamper the acetate excretion probl...

متن کامل

In silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma

As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characte...

متن کامل

A Study of the Short and Long-term Regulation of E. coli Metabolic Pathways

The present study addresses the regulatory network of Escherichia coli and offers a global view of the short- and long-term regulation of its metabolic pathways. The regulatory mechanisms responsible for key metabolic activities and the structure behind such mechanisms are detailed. Most metabolic functions are dependent on the activity of transcriptional regulators over gene expression--the so...

متن کامل

Evaluation of Wi-Fi Radiation Effects on Antibiotic Susceptibility, Metabolic Activity and Biofilm Formation by Escherichia Coli 0157H7, Staphylococcus Aureus and Staphylococcus Epidermis

Background: The radiation emitted from electromagnetic fields (EMF) can cause biological effects on prokaryotic and eukaryotic cells, including non-thermal effects. Objective: The present study evaluated the non-thermal effects of wireless fidelity (Wi-Fi) operating at 2.4 GHz part of non-ionizing EMF on different pathogenic bacterial strains (Escherichia coli 0157H7, Staphylococcus aureu...

متن کامل

Rapid method of luxS and pfs gene inactivation in enterotoxigenic Escherichia coli and the effect on biofilm formation.

Rapid and efficient inactivation of a target gene in Escherichia coli chromosomes is required to investigate metabolic engineering. In the present study, a multiple gene inactivation approach was demonstrated in four strains of enterotoxigenic E. coli (ETEC), which are the predominant pathogenic bacteria causing piglet diarrhea, mediated by λ Red and Xer recombination. The chromosomal genes, lu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013